катеноид
11катеноид — (2 м); мн. катено/иды, Р. катено/идов …
12катеноид — катен/оид/ …
13доткание — катеноид …
14Поверхность — (Surface, Oberfläche). Всякую непрерывную кривую линию можно представить, как след движущейся точки. Подобно этому и всякую П. можно образовать или описать движением в пространстве некоторой кривой линии неизменяемого или изменяемого вида и… …
15Поверхность — (Surface, Oberflache). Всякую непрерывную кривую линиюможно представить, как след движущейся точки. подобно этому и всякую П.можно образовать или описать движением в пространстве некоторой кривойлинии неизменяемого или изменяемого вида и размеров …
16КАПИЛЛЯРНАЯ КОНДЕНСАЦИЯ — конденсация пара в капиллярах и микротрещинах пористых тел, а также в промежутках между тесно сближенными тв. ч цами или телами. Необходимое условие К. к. смачивание жидкостью поверхности тела (ч ц). К. к. начинается с адсорбции молекул пара… …
17МИНИМАЛЬНАЯ ПОВЕРХНОСТЬ — поверхность, у к рой средняя кривизна Нравна нулю во всех точках. Первые исследования о М. п. восходят к Ж. Лагранжу (J. Lagrange, 1768), к рый рассмотрел следующую вариационную задачу: найти поверхность наименьшей площади, натянутую на данный… …
18Касательная плоскость — Пример простой поверхности Поверхность традиционное название для двумерного многообразия в пространстве. Поверхности определяется как множество точек, координаты которых удовлетворяют определённому виду уравнений: Если функция непрерывна в… …
19Внутренняя геометрия поверхностей — Пример простой поверхности Поверхность традиционное название для двумерного многообразия в пространстве. Поверхности определяется как множество точек, координаты которых удовлетворяют определённому виду уравнений: Если функция непрерывна в… …
20Внутренняя геометрия поверхности — Пример простой поверхности Поверхность традиционное название для двумерного многообразия в пространстве. Поверхности определяется как множество точек, координаты которых удовлетворяют определённому виду уравнений: Если функция непрерывна в… …